

Digital Power Meter User Manual DPM380/DPM380B

HAZARD CATAGORIES AND SPECIAL SYMBOL

Read all instruction carefully and check the device before installing or servicing it. The following safety alert symbol may appear throughout this manual or on the device to warn of any potential hazards or to call for attention.

The newsy meter should be installed energied as

The power meter should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by the manufacturer for any consequences arising out of the use of this material.

DISCLAIMER

Mikro shall not be liable for errors contained herein including any incidental and/or consequential damages arising from the use of this material. Mikro also reserves the right to vary the product from that described in this material without prior notice.

COPYRIGHT

The licensed software contained in the product is proprietary software owned by Mikro or its third party suppliers and shall be used solely in connection with the product.

BEFORE YOU BEGIN

- Apply appropriate personal protective equipment and follow safe electrical work practices.
- NEVER work alone.
- Turn off all power supplying the power meter and the equipment in which it is installed before working on it.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Before closing all covers and doors, carefully inspect the work area for tools and objects that may have been left inside the equipment.
- NEVER bypass external fusing.
- NEVER open circuit a CT; use the shorting block to short circuit the leads of the CT before removing the connection from the power meter.
- Before performing hi-pot testing on any equipment in which the power meter is installed, disconnect all input and output wires to the power meter. High voltage testing may damage electronic components contained in the power meter.
- The power meter should be installed in a suitable electrical enclosure.

Failure to follow this instruction may result in serious injury

CONTENTS

1. Inti	roductio	on	1
	1.1.	Content of box	1
	1.2.	Part of power meter	2
2. Ins		n Guide	3
	2.1.	Precautions	3
	2.2.	Mounting	3
	2.3.	Wiring	4
3. Me	ter para	ameters	6
4. Dis	play an	nd Buttons	6
5. Fui	nction		7
6. Set	tting up		9
	6.1.	Access programming mode	9
	6.2.	Setup CT ratio	10
	6.3.	Setup PT ratio	10
	6.4.	Neutral current	11
	6.5.	Setup communication configuration	11
	6.6.	Demand setting	12
	6.7.	System setting	12
	6.8.	Reset all energy register	13
	6.9.	Reset demand register	13
	6.10.	Reset maximum & minimum value	14
	6.11.	Remote set	14
	6.12.	Scroll setting	15
	6.13	Scroll delay setting	15
	6.14	Reset Hour on register	16
	6.15	Backlight setting	16
	6.16	Software version	16
	6.17	Exit from programming mode	17
	6.18	Setup new password	17
7. Sp	ecificati	ions	18
8. Mo	. Modbus Data Register *		

9.	. Maintenance and Troubleshooting		29
10.	10. Dimensions		
11.	Appendix		30
	11.1.	Demand Calculation	30
	11.2.	Data Read Format from Modbus *	30
	11.3.	Neutral Current Calculation	31

*- Applicable for DPM380 only

FIGURES	
1. Parts of power meter	2
2. Recommendation cut-out	3
3. 3-phase 4-wire system with 4 CTs	4
4. 3-phase 4-wire system with 3 CTs	4
5. 3-phase 3-wire with 3CTs and 3VTs	5
6. 3-phase 3-wire with 2CTs and 3VTs	5
7. Menu map for the normal mode	7
8. Flow map for the programming mode	8

TABLE

1.	Parts list	1
2.	Location and part label	2
3.	Model information	2
4.	Specification	18
5.	Data length nomenclature	20
6.	Device and communication register	20
7.	Operation data registers	21
8.	Setting data registers	28

1. Introduction

Thank you for purchasing the DPM380 / DPM380B Digital Power Meter. This multifunctional power meter measures the following parameters:

- True RMS phase voltage (L N)
- True RMS line voltage (L L)
- True RMS phase and neutral current
- Active, reactive and apparent power
- Total active, reactive and apparent energy
- Total and displacement power factor
- Frequency
- Voltage and current total harmonic distortion (THD)
- Demand and maximum demand for total active, reactive and apparent power
- Maximum and minimum phase and line voltage
- Maximum and minimum phase and neutral current
- Maximum and minimum total active, reactive and apparent power

This power meter also comes with the Modbus-RTU connectivity. (Only for DPM380 model)

1.1. CONTENT OF BOX

Upon opening this box, you should find the following item shown in table 1:

Table	1:	Parts	list

No	Description	Quantity
1	DPM380/DPM380B power meter	1
2	Retainer clip	2
3	Quick guide	1

1.2. PARTS OF POWER METER

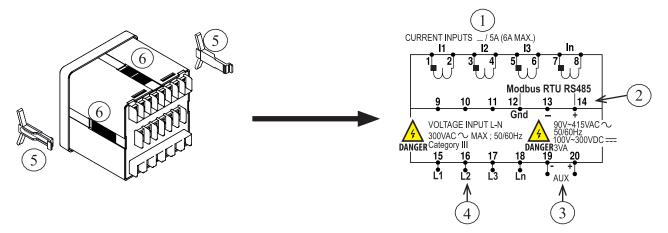


Figure 1: Parts of power meter

Table 2: Location and part label

Part	Description	
Current inputs	Current metering connections	
RS485 port *	The RS485 port is used for communications with remote monitoring and control system	
Power supply input	Connection to power the meter	
Voltage inputs	Voltage metering connections	
Retainer clips	Used to hold power meter in place.	
Retainer clips slot	ps slot To slot-in retainer clips in place	
	Current inputs RS485 port * Power supply input Voltage inputs Retainer clips	

*- Applicable for DPM380 only

Table 3: Model information

Model Information			
DPM380	Auxiliary 90~415VAC or 100~300VDC; with Modbus		
DPM380B	Auxiliary 90~415VAC or 100~300VDC; without Modbus		

2. Installation Guide

2.1. PRECAUTIONS

Before installing the power meter, please check that the environment meets the following condition:

- Operating temperature -10 Celcius to +55 Celcius.
- Humidity 5% to 95%, non-condensing
- Dust free environmental away from electrical noise and radiation

2.2. MOUNTING

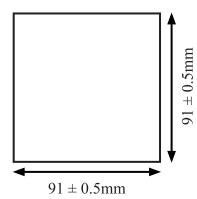


Figure 2: Recommended out-cut.

a) Provide a cut out hole on the switchgear panel according to the dimension below.

b) Insert the power meter through the hole and slide in the retainer clip along the slots on left and right sides or bottom and top sides of the power meter until the device is tightly secured on the switchgear panel. The orientation of

the retainer clips is shown in Figure 1.

The retainer clip can be removed by lifting the tab lightly at the handle end.

c) Connect the metering voltage input, current input, communication and auxiliary according to the wiring schemes shown in Section 2.3, Figure 3 to 6 on the next page.

d) The recommended wire size is as below:

- Voltage input and auxiliary AWG16~22
- Current input AWG12~18
- Modbus-RTU AWG22 or thicker, shielded twisted pair *

NOTE:

Polarity marks must be followed as shown for CTs (S1 and S2). Please make sure the power to the current metering input is totally shunted. Under no circumstances can the CT connection be left in open circuit. Use a CT shorting block if necessary.

e) When connecting the power meter, please make sure the polarity to the terminal is correctly aligned.

f) If the Modbus-RTU* is used, it can be connected up to 32 devices in a daisy chain fashion and the cable total length should not be more than 1000m.

NOTE:

For Modbus-RTU^{*} connection, avoid running the cable near sources of electrical noise. The network cable shield should be grounded at only one end.

*- Applicable for DPM380 only

Figure 3: 3 Phase 4-Wire System with 4CTs connection, direct voltage input.

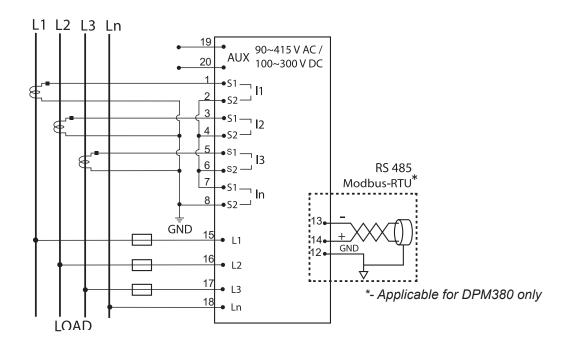


Figure 4: 3-Phase 4-Wire System with 3CTs connection, direct voltage input.

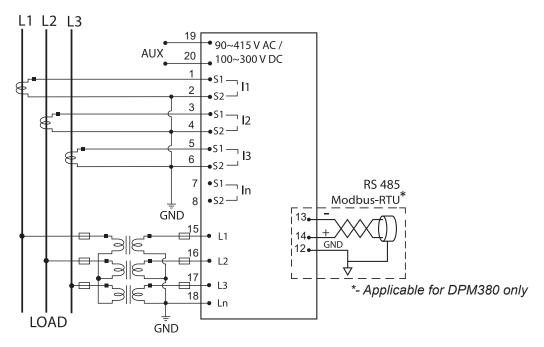


Figure 5 : 3-phase 3-wire with 3CTs and 3VTs connection.

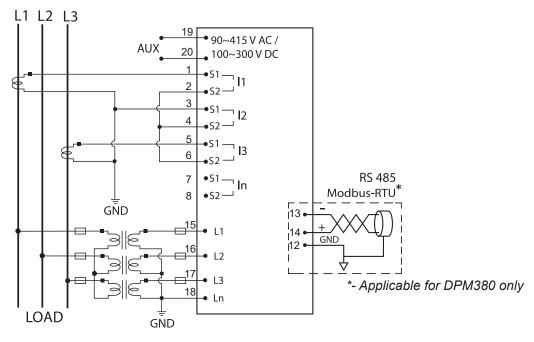
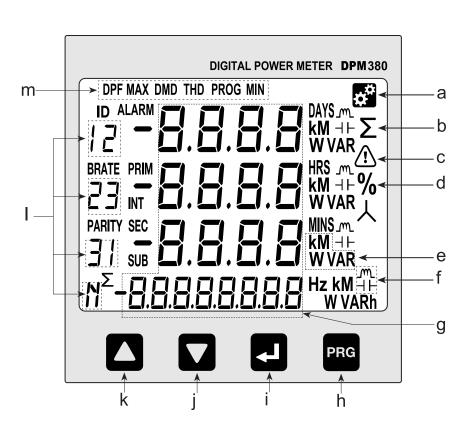


Figure 6: 3-phase 3-wire with 2CTs and 3VTs connection.

NOTE:

I2 current measurement is based on the vector sum of 2 CTs.

3. Meter parameters


Before commencing operation, the meter has to be set up. To do this, the meter must be powered up by the meter control power supply.

Under Section 6, the following parameters should be reviewed against the default value if necessary:

- CT Ratio
- PT Ratio
- Neutral current input
- Modbus-RTU setting *
- Demand setting
- System setting
- Remote Set *
- Scroll mode setting and delay time
- Backlight setting

The flow maps for the meter is under Section 5. It is guideline for the user to flip to the desire window whether in normal mode or programming mode.

4. Display and Buttons

*- Applicable for DPM380 only

- a. Setting Indicator
- b. Total Indicator
- c. Alarm Indicator
- d. Percentage Indicator
- e. Unit Indicator
- f. Capacitive/Inductive Indicator
- g. Digit Display
- h. 'PROG' button
- i. 'NEXT' button
- j. 'DOWN' button
- k. 'UP' button
- I. Phase Indicator
- m. Window Indicator

5. Function

Figure 7 below shows menu map for the power meter. It includes the setting and measurement display for the power meter. These menus can be accessed by pressing NEXT, UP, PROG & DOWN buttons.

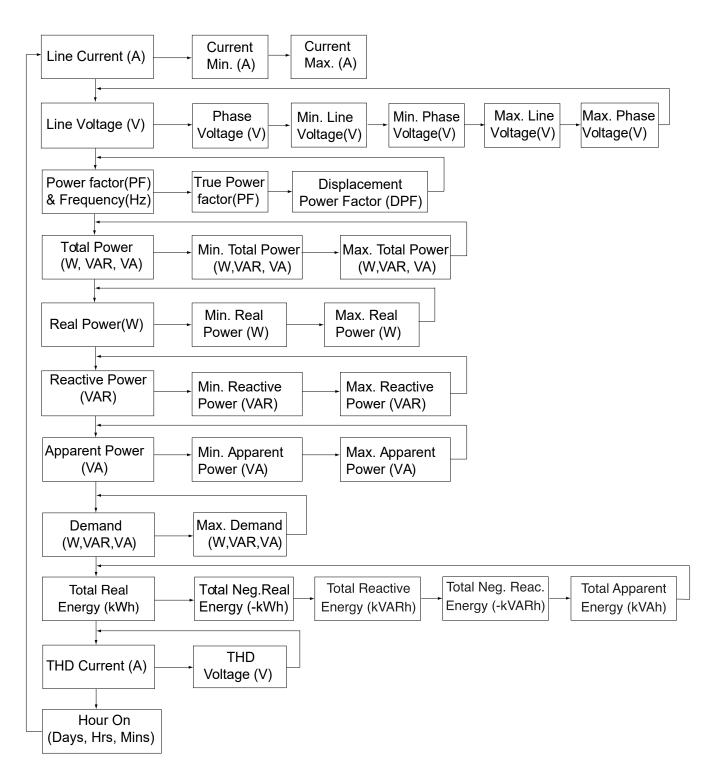


Figure 7 : Menu map for normal mode.

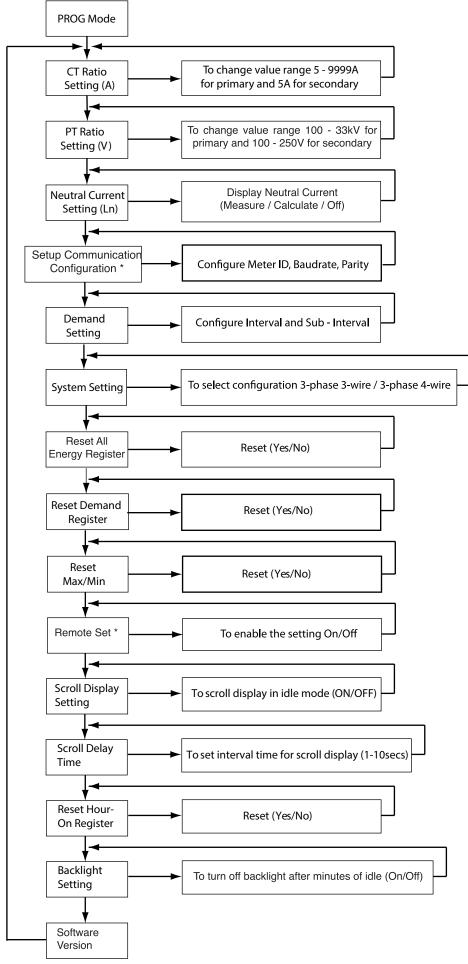


Figure 8 : Menu map for programming mode

6. Setting up

The power meter comes with factory default settings. These values may be changed by navigating to the appropriate screens and entering new values. Use the instructions in the following sections to change the values.

6.1. ACCESS PROGRAMMING MODE

- a. Press the PROG button to enter programming mode. The first number will blink to enter password.
- b. Use the UP or DOWN button to change display value and the NEXT button to shift to next number.
- c. Press the PROG button to confirm and enter programming mode. Setup CT ratio will be display. If the password is incorrect, the meter will return to normal mode.
- d. To exit press the PROG button and display will return to normal mode.

6.2. SETUP CT RATIO

- a. CT ratio setting is the first item displayed in programming mode.
- b. Press the NEXT button to change. The first digit will blink.
- c. Use the UP or DOWN button to change the primary CT value.
- d. Press the NEXT button for the next digit. Repeat step (b) & (c) to change, or else press NEXT button till the digit stop blinking.
- e. To proceed next setting press DOWN button. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

6.3. SETUP PT RATIO

- a. Scroll in programming mode until "Pt" is displayed using the UP or DOWN button.
- b. This parameter is to change the PT value if the Power Transformer (PT) is connected.
- c. Press the NEXT button to change. The "V" symbol for primary will blink.
- d. Press the UP or DOWN button to change the value of setting.
- e. Press the NEXT button to confirm the new setting and proceed for secondary setting.
- f. Repeat step (c) & (d) to change for secondary. Once confirmed, press the NEXT button again to confirm. The secondary "V" will stop blinking.
- g. To exit programming mode, press the PROG button. Refer Section 6.16.

NOTE:
PT Ratio default value is 100/100V

6.4. NEUTRAL CURRENT

- a. Scroll in programming mode until "Ln" is displayed using the UP or DOWN button.
- b. This parameter is to display neutral current if the neutral current (Ln) is connected.
- c. Press the NEXT button to change. The "PROG" symbol will blink.
- d. Press the UP or DOWN button to toggle the symbol "cAL" for calculated value, "MEA" for measured value or "OFF" to disable.
- e. Press the NEXT button to confirm the new setting.
- f. To proceed to the next setting, press the DOWN button.
- g. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

NOTE:	
Neutral current default setting is measured value	

6.5. SETUP COMMUNICATION CONFIGURATIONS *

*- Applicable for DPM380 only

- a. Scroll until "ID BRATE PARITY" is displayed using the UP or DOWN button.
- b. Press the NEXT button. The "PROG" and "-" symbol next to "ID" will blink. Use the UP or DOWN button to change the device ID.
- c. Next, press the NEXT button and "-" symbol next to "BRATE" will blink to change baudrate. Repeat step (b) to change.
- d. Press NEXT button to change parity and "-" symbol next to "PARITY" will blink. Repeat step (b) to change.
- e. Then press the NEXT button to confirm new setting. The "PROG" will stop blinking.
- f. To proceed next setting press DOWN button. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

NOTE:

Default value for the communication ID is 1, baudrate is 38400 bps and parity set to none.

6.6. DEMAND SETTING

- a. Scroll until "DMD" is displayed using the UP or DOWN button.
- b. Press the NEXT button to change interval value. The "PROG" symbol will displayed and "-" symbol next to "INT" will blink.
- c. Use UP or DOWN button to change value and press NEXT button to confirm and change sub-interval setting. The "-" symbol next to "SUB" will blink. Press UP or DOWN button to change and NEXT button to confirm.
- d. To proceed next setting press DOWN button. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

NOTE: Demand setting default value is 60/4

6.7. SYSTEM SETTING

	<u>ה</u> ה ה	æ
	Ļ	PRG

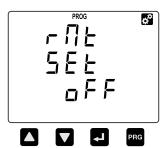
- a. Scroll in programming mode until "SYSt sEt" is displayed using the UP or the DOWN button.
- b. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to toggle 3-phase 4-wire "3P4r" or 3-phase 3-wire "3P3r" symbols.
- c. Press the NEXT button to confirm new setting.
- d. To proceed next setting press DOWN button. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

NOTE: System setting default value is 3-phase 4-wire

6.8. RESET ALL ENERGY REGISTER

- a. Scroll in programming mode until "EnEr rSt" is displayed using the UP or the DOWN button.
- b. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to toggle "yES" or "no" symbols.
- c. To abort clearing energy register values, select "no". To clear all energy values select "yES".
- d. Press the NEXT button to confirm the new setting.
- e. To proceed next setting press DOWN button.
- f. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

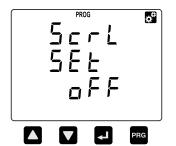
6.9. RESET DEMAND REGISTER


- a. Scroll in programming mode until "dMd rSt" is displayed using the UP or the DOWN button.
- b. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to toggle "yES" or "no" symbols.
- c. To abort clearing demand register, select "no". To clear all demand register select "yES".
- d. Press the NEXT button to confirm the new setting.
- e. To proceed next setting, press DOWN button.
- f. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

6.10. RESET MAXIMUM AND MINIMUM VALUE

- a. Scroll until "rSEt" is displayed using the UP or the DOWN button.
- b. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to toggle "yES" or "no" symbols.
- c. To abort clearing max. and min. values, select "no". To clear all max. and min. values select "yES".
- d. Press the NEXT button to confirm new setting.
- e. To proceed next setting press DOWN button. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

6.11. REMOTE SET *


*- Applicable for DPM380 only

- a. Scroll until "rMt SEt" is displayed using the UP or the DOWN button.
- b. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to toggle Enable "on" or disable "oFF" symbols.
- c. Press the NEXT button to confirm new setting.
- d. To proceed next setting press DOWN button. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

NOTE:

Enabling the remote set allows the remote terminal to read and write the meter setting via Modbus-RTU, otherwise the setting data can only be read. Default value is ON.

6.12. SCROLL SETTING

- a. Scroll in programming mode until "Scrl SEt" is displayed using the UP or the DOWN button.
- b. This function is to turn ON/OFF scroll mode. If turn on, when the display is idle the meter will shows each window in normal mode base on the scroll delay setting time.
- c. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to toggle "oFF" or "on" symbols.
- d. Press the NEXT button to confirm the new setting.
- e. To proceed next setting, press DOWN button.
- f. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

NOTE: Scroll setting default value is oFF

6.13. SCROLL DELAY SETTING

- a. Scroll in programming mode until "Scrl dELY" is displayed using the UP or the DOWN button.
- b. This function is to set time interval for scroll window.
- c. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to set 1sec to 10secs interval.
- d. Press the NEXT button to confirm the new setting.
- e. To proceed next setting, press DOWN button.
- f. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

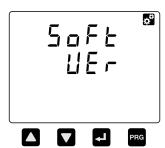
NOTE:

Scroll delay time default value is 10 seconds.

6.14. RESET HOUR-ON REGISTER

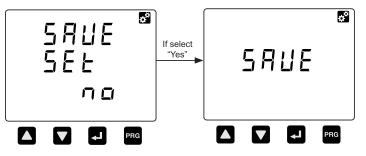
- a. Scroll in programming mode until "Hron rSt" is displayed using the UP or the DOWN button.
- b. This function is to clear hour-on register.
- c. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to toggle "yES" or "no" symbols.
- d. To abort clearing hour-on register, select "no". To clear hour-on register select "yES".
- e. Press the NEXT button to confirm the new setting.
- f. To proceed next setting, press DOWN button.
- g. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

6.15. BACKLIGHT SETTING



- a. Scroll in programming mode until "bcLt" is displayed using the UP or the DOWN button.
- b. This function is to turn off backlight after 10 minutes idle.
- c. Press the NEXT button. The "PROG" symbol will blink. Use the UP or DOWN button to toggle "oFF" or "on" symbols.
- d. Press the NEXT button to confirm the new setting.
- e. To proceed next setting, press DOWN button.
- f. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if change is made. Refer Section 6.16.

NOTE:


Backlight setting default value is oFF

6.16. SOFTWARE VERSION

- a. Scroll in programming mode until "SoFt VEr" is displayed using the UP or the DOWN button.
- b. This window will display the current firmware version of the device.
- c. To proceed next setting, press DOWN button.
- d. To exit programming mode, press the PROG button. The user will be prompted to confirm the saving of settings if changes are made. Refer Section 6.16.

6.17. EXIT FROM PROGRAMMING MODE

- a. Use the PROG button exit from programming mode window. Any changes made in the setting will be prompted to confirm saving. The "SAVE SET" display will appear.
- b. Use the UP or DOWN button to select "yES" or "no" symbols.
- c. To exit without saving the new value, select "no" or else select "yES". To confirm, press PROG button.
- d. If select "yES", the window display "SAVE" for few seconds to save new setting.
- e. Then, meter will exit from programing mode to normal mode.

6.18. SETUP THE PASSWORD

a. Press the NEXT and PROG buttons simultaneously until the password ID request window is displayed. Key in the current password. Refer to Section 6.1 on how to do this.

b. After pressing the PROG button, the "nEw id" window will be displayed. At this stage, the user needs to key in the new password. Use the UP or DOWN button to change the digit value and the NEXT button to shift to next digit. Once confirmed, press the PROG button.

5 A 5 E		
	no	
	Ļ	PRG

c. Next, the "SAVE SEt" will be displayed. Use the UP or DOWN buttons to toggle the "yES" and "no" symbols to save the new password. Once confirmed, press the PROG button and the meter will return to normal display mode.

7. Specification

Table 4: Specification

Electrical Characteristic				
System	3P3W & 3P4W			
Current				
Display	Three phase current & neutral(selectable)			
CT Primary	5-9999A			
CT Secondary	5A			
Accuracy	0.5% (from 1A to 6A secondary)			
Sustained overload	6A			
Voltage measurement				
PT Primary	100-33kV			
PT Secondary	no PT, 100-250V			
Secondary Phase Voltage	20~300VAC			
Accuracy	0.5%			
Power (kW,kVAR,kVA) measurement				
Display	each phase & total			
Accuracy	1%			
Power factor measurement				
Display	each phase & total			
Accuracy	1%			
Frequency measurement				
Range	45 ~ 65 Hz			
Accuracy	0.5%			
Energy measurement				
Active	IEC62053-21:Class 1			
Reactive	IEC62053-23:Class 2			
Demand measurement				
Demand interval	60 to 1800 seconds			
Demand sub-interval	1 to 120			

Table 4: Specification (cont)

Communication *				
Hardware Interface	Isolated RS485			
Protocol	Modbus-RTU			
ID	1 to 255			
Baudrate	2400, 4800, 9600, 19200, 38400			
Parity	None, even, odd			
Operating Condition				
Auxiliary Supply	90~415VAC or 100~300VDC			
Operating Temperature	-10 C ~ +55 C			
Storage Temperature	-20 C ~ +70 C			
Operating time (on hour)	Up to 9999 days, 23 hours, 59 minutes.			
Mechanical Characteristic				
Dimension				
Case	L96mm x W96mm x H87.5mm			
Mounting type	Panel			
LCD view area	76mm x 56.5mm			
Weight	450g			
Electromagnetic Compatibility (EMC)				
Part 6-2: Generic Standards IEC61000-6-2	Immunity for industrial environments			
Part 6-4: Generic Standards IEC61000-6-4	Emission standard for industrial environments			

8.1 Data Type

By default, the data format in each register is unsigned 16-bit word. Shorter data may be encoded in the unsigned 8-bit byte format whereas longer data may be encoded either in the unsigned 32-bit double word format, signed 32-bit integer format or signed 64-bit long integer format. Two's complement is used to represent signed numbers. The nomenclature used in this manual is shown in Table 5.

Table 5: Data length nomenclature

Data Length	Unsigned	Signed
4-bit	nibble	-
8-bit	byte	-
16-bit	word	short
32-bit	dword	int
64-bit	qword	long

For data with length shorter than 16 bits, the upper unused bits, nibbles or bytes can be ignored. In cases where multiple registers are required, the big endian convention shall apply unless otherwise specified.

8.2 List Register

Tables 6 and 7 show the read only variables (function code 0x03 or 0x04) for device & communication info, operations, power factor and harmonics data respectively whereas Table 8 shows the read and write variables (function codes 0x03, 0x04 or 0x06) for the settings data.

Table 6: Device and communication register	Table (6:	Device	and	communication	register
--	---------	----	--------	-----	---------------	----------

Read Only (Function 0x03 or 0x04)				
0	Reserved			
1-3	Device Type			
4-5	Version			
	Read Only (Function 0x03 or 0x04)			
1000	Device ID	1-255		
1001	Parity	1 = none 2 = even 3 = odd		
1002	Baudrate	1 = 2400 2 = 4800 3 = 9600 4 = 19200 5 = 38400		

Table 7: Operation data registers

	Read Only (Function 0x03 or 0x04)			
Register	Description	Туре	Min. Unit	Range
4000- 4001	Negative Real Energy	dword	1kWh	0 ~ 1000000M
4002-4003	Positive Real Energy	dword	1kWh	0 ~ 1000000M
4004-4005		Reserve	ed	
4006-4007	Apparent Energy	dword	1kVAh	0 ~ 1000000M
4008-4009	Negative Reactive Energy	dword	1kVArh	0 ~ 1000000M
4010-4011	Positive Reactive Energy	dword	1kVArh	0 ~ 1000000M
4012-4013	Total Real Power	int	1W	-2000M ~ 2000M
4014-4015	Total Apparent Power	dword	1VA	0 ~ 2000M
4016-4017	Total Reactive Power	int	1VAR	-2000M ~ 2000M
4018	Total Power Factor	word	0.001	0 ~ 1.000
4019	Frequency	word	0.01Hz	45.00 ~ 65.00
4020-4021	Instantaneous Current L1	dword	0.001A	0 ~ 999.9kA
4022-4023	Instantaneous Current L2	dword	0.001A	0 ~ 999.9kA
4024-4025	Instantaneous Current L3	dword	0.001A	0 ~ 999.9kA
4026-4027	Instantaneous Current Ln	dword	0.001A	0 ~ 999.9kA
4028-4029	Voltage Phase L12	dword	0.1V	0 ~ 999.9kV
4030-4031	Voltage Phase L23	dword	0.1V	0 ~ 999.9kV
4032-4033	Voltage Phase L31	dword	0.1V	0 ~ 999.9kV
4034-4035	Voltage Phase L1	dword	0.1V	0 ~ 999.9kV
4036-4037	Voltage Phase L2	dword	0.1V	0 ~ 999.9kV
4038-4039	Voltage Phase L3	dword	0.1V	0 ~ 999.9kV
4040-4041	Real Power L1	int	1W	-2000M ~ 2000M
4042-4043	Real Power L2	int	1W	-2000M ~ 2000M
4044-4045	Real Power L3	int	1W	-2000M ~ 2000M
4046-4047	Apparent Power L1	dword	1VA	0 ~ 2000M
4048-4049	Apparent Power L2	dword	1VA	0 ~ 2000M
4050-4051	Apparent Power L3	dword	1VA	0 ~ 2000M

	Read Only (Function 0x03 or 0x04)				
Register	Description	Туре	Min. Unit	Range	
4052-4053	Reactive Power L1	int	1VAR	-2000M ~ 2000M	
4054-4055	Reactive Power L2	int	1VAR	-2000M ~ 2000M	
4056-4057	Reactive Power L3	int	1VAR	-2000M ~ 2000M	
4058- 4059	Total Demand Reactive Power	int	1VAR	-2000M ~ 2000M	
4060-4061	Max.Total Demand Reactive Power	int	1VAR	-2000M ~ 2000M	
4062-4063		Reser	ved		
4064- 4065	Total Demand Real Power	int	1W	-2000M ~ 2000M	
4066-4067	Max. Total Demand Real Power	int	1W	-2000M ~ 2000M	
4068-4069		Reser	ved		
4070-4071	Total Demand Apparent Power	dword	1VA	0 ~ 2000M	
4072-4073	Max. Total Demand Apparent Power	dword	1VA	0 ~ 2000M	
4074-4075		Reser	ved		
4076	Displacement Power Factor L1	word	0.001	0 ~ 1.000	
4077	Displacement PF sign L1	word	-	0=Resistive; 1=ind; 2=cap	
4078	Displacement Power Factor L2	word	0.001	0 ~ 1.000	
4079	Displacement PF sign L2	word	-	0=Resistive; 1=ind; 2=cap	
4080	Displacement Power Factor L3	word	0.001	0 ~ 1.000	
4081	Displacement PF sign L3	word	-	0=Resistive; 1=ind; 2=cap	
4082	THD Current L1	word	0.1%	0 ~ 1000	
4083	THD Current L2	word	0.1%	0 ~ 1000	
4084	THD Current L3	word	0.1%	0 ~ 1000	

	Read Only (Function 0x03 or 0x04)			
Register	Description	Туре	Min. Unit	Range
4085	THD Voltage L1	word	0.1%	0 ~ 1000
4086	THD Voltage L2	word	0.1%	0 ~ 1000
4087	THD Voltage L3	word	0.1%	0 ~ 1000
4088	Energy Full Flag	word		Energy flag * bit 7 to 5 = reserved bit 4 = (-)kVARh bit 3 = (-) kWh bit 2 = kVAh bit 1 = (+)kVARh bit 0 = (+)kWh
4089	Power Factor L1	word	0.001	0 ~ 1.000
4090	Sign Power Factor L1	word	-	0=Resistive; 1=ind; 2=cap
4091	Power Factor L2	word	0.001	0 ~ 1.000
4092	Sign Power Factor L2	word	-	0=Resistive; 1=ind; 2=cap
4093	Power Factor L3	word	0.001	0 ~ 1.000
4094	Sign Power Factor L3	word	-	0=Resistive; 1=ind; 2=cap
4095	Sign Total Power Factor	word	-	0=Resistive; 1=ind; 2=cap
4096- 4097	Current L1 Max.	dword	0.001A	0 ~ 999.9kA
4098-4099		Rese	rved	
4100- 4101	Current L2 Max.	dword	0.001A	0 ~ 999.9kA
4102-4103		Rese	rved	
4104- 4105	Current L3 Max.	dword	0.001A	0 ~ 999.9kA
4106-4107	Reserved			
4108- 4109	Current Ln Max.	dword	0.001A	0 ~ 999.9kA
4110-4111		Rese	rved	
4112- 4113	Voltage L1 Max.	dword	0.1V	0 ~ 999.9kV
4114-4115		Rese	rved	
4116- 4117	Voltage L2 Max.	dword	0.1V	0 ~ 999.9kV
4118-4119		Rese	rved	

*if the energy is full, the bit is set to 1, else bit is 0.

	Read Only (Function 0x03 or 0x04)				
Register	Description	Туре	Min. Unit	Range	
4120- 4121	Voltage L3 Max.	dword	0.1V	0 ~ 999.9kV	
4122-4123		Reser	ved		
4124- 4125	Voltage L12 Max.	dword	0.1V	0 ~ 999.9kV	
4126-4127		Reser	ved		
4128- 4129	Voltage L23 Max.	dword	0.1V	0 ~ 999.9kV	
4130-4131		Reser	ved		
4132-4133	Voltage L31 Max.	dword	0.1V	0 ~ 999.9kV	
4134-4135		Reser	ved		
4136- 4137	Total Real Power Max.	int	1W	-2000M ~ 2000M	
4138-4139	Reserved				
4140- 4141	Total Apparent Power Max.	dword	1VA	0 ~ 2000M	
4142-4143	Reserved				
4144- 4145	Total Reactive Power Max.	int	1VAR	-2000M ~ 2000M	
4146-4147		Reser	ved		
4148- 4149	Max. Real Power L1	int	1W	-2000M ~ 2000M	
4150-4151		Reser	ved		
4152- 4153	Max. Real Power L2	int	1W	-2000M ~ 2000M	
4154-4155		Reser	ved		
4156- 4157	Max. Real Power L3	int	1W	-2000M ~ 2000M	
4158-4159		Reserved			
4160- 4161	Max. Apparent Power L1	dword	1VA	0 ~ 2000M	
4162-4163		Reser	ved		
4164- 4165	Max. Apparent Power L2	dword	1VA	0 ~ 2000M	
4166-4167	Reserved				
4168- 4169	Max. Apparent Power L3	dword	1VA	0~2000M	

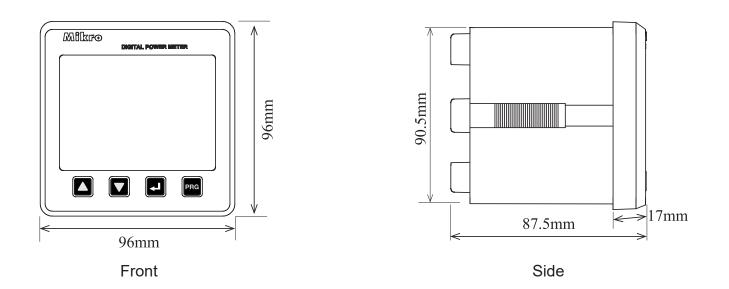
	Read Only (Function 0x03 or 0x04)			
Register	Description	Туре	Min. Unit	Range
4170-4171		Reserv	ved	
4172- 4173	Max. Reactive Power L1	int	1VAR	-2000M ~ 2000M
4174-4175		Reserv	ved	
4176- 4177	Max. Reactive Power L2	int	1VAR	-2000M ~ 2000M
4178-4179		Reserv	ved	
4180- 4181	Max. Reactive Power L3	int	1VAR	-2000M ~ 2000M
4182-4183		Reserv	ved	
4184- 4185	Current L1 Min.	dword	0.001A	0 ~ 999.9kA
4186-4187		Reserv	ved	
4188- 4189	Current L2 Min.	dword	0.001A	0 ~ 999.9kA
4190-4191		Reserv	ved	
4192- 4193	Current L3 Min.	dword	0.001A	0 ~ 999.9kA
4194-4195		Reserv	ved	
4196- 4197	Current Ln Min.	dword	0.001A	0 ~ 999.9kV
4198-4199		Reserv	ved	
4200- 4201	Voltage L1 Min.	dword	0.1V	0 ~ 999.9kV
4202-4203		Reserv	ved	
4204- 4205	Voltage L2 Min.	dword	0.1V	0 ~ 999.9kV
4206-4207	Reserved			
4208- 4209	Voltage L3 Min.	dword	0.1V	0 ~ 999.9kV
4210-4211		Reserv	ved	
4212- 4213	Voltage L12 Min.	dword	0.1V	0 ~ 999.9kV
4214-4215		Reserv	ved	
4216- 4217	Voltage L23 Min.	dword	0.1V	0 ~ 999.9kV
4218-4219		Reserv	ved	

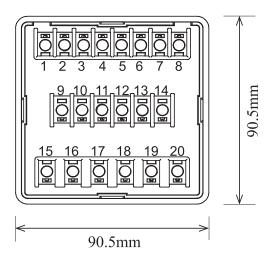
Read Only (Function 0x03 or 0x04)				
Register	Description	Туре	Min. Unit	Range
4220-4221	Voltage L31 Min.	dword	0.1V	0 ~ 999.9kV
4222-4223		Reserve	d	
4224-4225	Total Real Power Min.	int	1W	-2000M ~ 2000M
4226-4227		Reserve	d	
4228-4229	Total Apparent Power Min.	dword	1VA	0 ~ 2000M
4230-4231		Reserve	d	
4232- 4233	Total Reactive Power Min.	int	1VAR	-2000M ~ 2000M
4234-4235		Reserve	d	
4236-4237	Real Power Min. L1	int	1W	-2000M ~ 2000M
4238-4239	Reserved			
4240-4241	Real Power Min. L2	int	1W	-2000M ~ 2000M
4242-4243		Reserve	d	
4244-4245	Real Power Min. L3	int	1W	-2000M ~ 2000M
4246-4247		Reserve	d	
4248-4249	Apparent Power Min. L1	dword	1VA	0 ~ 2000M
4250-4251		Reserve	d	
4252-4253	Apparent Power Min. L2	dword	1VA	0 ~ 2000M
4254-4255		Reserve	d	
4256-4257	Apparent Power Min. L3	dword	1VA	0 ~ 2000M
4258-4259		Reserve	d	
4260-4261	Reactive Power Min. L1	int	1VAR	-2000M ~ 2000M
4262-4263		Reserve	d	
4264-4265	Reactive Power Min. L2	int	1VAR	-2000M ~ 2000M
4266-4267		Reserve	d	
4268-4269	Reactive Power Min. L3	int	1VAR	-2000M ~ 2000M

Read or write (Function 0x03,0x04 or 0x06)			
Register	Description	Range	
100	PT ratio primary	100 ~ 33kV	
101	PT ratio secondary	no PT ('0'), 100 ~ 250V	
102	CT ratio primary	5 ~ 9999A	
103	CT ratio secondary	5A	
104	Interval Demand	60 ~ 1800s	
105	Sub-Interval Demand	1 ~ 120	
106	System Configuration	0 = 3P4W 1 = 3P3W	
107	Backlight setting	0 = OFF 1 = ON	
108	Scroll interval	1 - 10 secs	
109	System scroll setting	0 = OFF 1 = ON	
110	Neutral setting	0 = OFF 1 = Measured 2 = Calculated	
111	Minutes	0 - 59 mins	
112	Hours	0 - 23 hrs	
113	Days	0 - 9999 days	
114	Hour-on reset	1 = YES	
115	Max. & Min. Demand reset	1 = YES	
116	Max. & Min. parameter reset	1 = YES	

NOTE:

Register list is based on firmware version 1.06


9. Maintenance and Troubleshooting

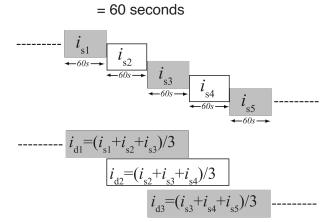

The power meter does not contain any user-serviceable parts. If the power meter requires service, please contact your local sales representative. Do not open the power meter. Opening the power meter voids the warranty.

NOTE:

We reserve the right to alter or modify the information contained herein at any time in line with our product development without prior notification. We also reserve the right to discontinue production & delivery of product.

10. Meter Dimension

Back


11. Appendix

11.1. DEMAND CALCULATION

Demand parameters are used to show average values over a demand interval. This power meter using sliding block method. The demand value is based on interval divide by sub-interval time. Example is shown below:

SETTING: Interval time = 180 seconds ; sub-interval = 3

Measurement = interval time / sub-interval = 180 / 3

11.2. DATA READ FORMAT FROM MODBUS

a) 4000-4001 : Negative Real Energy

Address 4000		Address 4001	
MSB	LSB	MSB	LSB
0x00	0x01	0x23	0x34

Negative Real Energy

= 0x00012334

=74548 x 1kWh (min value) =74548kWh

b) 4012-4013 : Total Real Power; (Signed register)

Address 4012		Address 4013	
MSB	LSB	MSB	LSB
0xFF	0xFB	0x6C	0x20

Total Real Power = 0xFFFB6C20

If MSB is "1", it is negative value;

Total Real Power = $0xFFFB6C20 \times (-1)$; = 0x493E0; 300 000

= 300000 x 1W(min value)

= -300kW

11.3. NEUTRAL CURRENT CALCULATION

The formula for neutral current, Ln is:

 $\sqrt{A^2 + B^2 + C^2}$ - AB - AC - BC

where;

A: Current Line 1 (A) B: Current Line 2 (A)

C: Current Line 3 (A)

Example Given L1 is 3A, L2 is 6A, L3 is 8A;

Substitute into formula;

 $= \sqrt{(3)^2 + (6)^2 + (8)^2 - (2 \times 8) - (3 \times 8) - (6 \times 8)}$ = 4.359 A

12. Version History

Version	Description
1.0	Released version
1.1	Casing height changed to 87.5mm
	Added calculation setting for neutral current
1.2	Updated operation data register table